Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            MacQueen, A (Ed.)Abstract We present an SNP-based crossover map for Drosophila mauritiana. Using females derived by crossing 2 different strains of D. mauritiana, we analyzed crossing over on all 5 major chromosome arms. Analysis of 105 male progeny allowed us to identify 327 crossover chromatids bearing single, double, or triple crossover events, representing 398 crossover events. We mapped the crossovers along these 5 chromosome arms using a genome sequence map that includes the euchromatin-heterochromatin boundary. Confirming previous studies, we show that the overall crossover frequency in D. mauritiana is higher than is seen in Drosophila melanogaster. Much of the increase in exchange frequency in D. mauritiana is due to a greatly diminished centromere effect. Using larval neuroblast metaphases from D. mauritiana—D. melanogaster hybrids we show that the lengths of the pericentromeric heterochromatin do not differ substantially between the species, and thus cannot explain the observed differences in crossover distribution. Using a new and robust maximum likelihood estimation tool for obtaining Weinstein tetrad distributions, we observed an increase in bivalents with 2 or more crossovers when compared with D. melanogaster. This increase in crossing over along the arms of D. mauritiana likely reflects an expansion of the crossover-available euchromatin caused by a difference in the strength of the centromere effect. The crossover pattern in D. mauritiana conflicts with the commonly accepted view of centromeres as strong polar suppressors of exchange (whose intensity is buffered by sequence nonspecific heterochromatin) and demonstrates the importance of expanding such studies into other species of Drosophila.more » « lessFree, publicly-accessible full text available March 7, 2026
- 
            ABSTRACT Nonmuscle myosin II (NMII) generates cytoskeletal forces that drive cell division, embryogenesis, muscle contraction and many other cellular functions. However, at present there is no method that can directly measure the forces generated by myosins in living cells. Here, we describe a Förster resonance energy transfer (FRET)-based tension sensor that can detect myosin-associated force along the filamentous actin network. Fluorescence lifetime imaging microscopy (FLIM)-FRET measurements indicate that the forces generated by NMII isoform B (NMIIB) exhibit significant spatial and temporal heterogeneity as a function of donor lifetime and fluorophore energy exchange. These measurements provide a proxy for inferred forces that vary widely along the actin cytoskeleton. This initial report highlights the potential utility of myosin-based tension sensors in elucidating the roles of cytoskeletal contractility in a wide variety of contexts.more » « less
- 
            Salz, H (Ed.)Abstract Meiosis is usually described as 4 essential and sequential processes: (1) homolog pairing; (2) synapsis, mediated by the synaptonemal complex; (3) crossing over; and (4) segregation. In this canonical model, the maturation of crossovers into chiasmata plays a vital role in holding homologs together and ensuring their segregation at the first meiotic division. However, Lepidoptera (moths and butterflies) undergo 3 distinct meiotic processes, only one of which is canonical. Lepidoptera males utilize 2 meiotic processes: canonical meiosis that produces nucleated fertile sperm, and a noncanonical meiosis that produces anucleated nonfertile sperm which are nonetheless essential for reproduction. Lepidoptera females, which carry heteromorphic sex chromosomes, undergo a completely achiasmate (lacking crossovers) meiosis, thereby requiring an alternative mechanism to ensure proper homolog segregation. Here, we report that the development of a molecular cell biology toolkit designed to properly analyze features of meiosis, including the synaptonemal complex structure and function, in the silkworm Bombyx mori. In addition to standard homology searches to identify Bombyx orthologs of known synaptonemal complex encoding genes, we developed an ortholog discovery app (Shinyapp) to identify Bombyx orthologs of proteins involved in several meiotic processes. We used this information to clone genes expressed in the testes and then created antibodies against their protein products. We used the antibodies to confirm the localization of these proteins in normal male spermatocytes, as well as using in vitro assays to confirm orthologous interactions. The development of this toolkit will facilitate further study of the unique meiotic processes that characterize meiosis in Lepidoptera.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
